Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678925

RESUMO

The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use. The bow-tie type topology of BDTL049 was recently investigated against the Gram-positive model organism Bacillus subtilis, revealing strong bactericidal properties. In this study, we follow up on open questions concerning the usability of BDTL049. For this, we synthesized a fluorescent-labeled version of BDTL049 that maintained all antimicrobial features to unravel the interaction of the compound and bacterial membrane. Subsequently, we highlight the bacterial sensitivity against BDTL049 by performing a mutational study of known resistance determinants. Finally, we address the cytotoxicity of the compound in human cells, unexpectedly revealing a high sensitivity of the eukaryotic cells upon BDTL049 exposure. The insights presented here further elaborate on the unique features of BDTL049 as a promising candidate as an antimicrobial agent while not precluding that further rounds of rational designing are needed to decrease cytotoxicity to ultimately pave the way for synthetic antibiotics toward clinical applicability.

2.
Front Microbiol ; 13: 912536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090105

RESUMO

Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.

3.
Front Microbiol ; 11: 2022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973732

RESUMO

The rise of drug-resistant fungal pathogens urges for the development of new tools for the discovery of novel antifungal compounds. Polyene antibiotics are potent agents against fungal infections in humans and animals. They inhibit the growth of fungal cells by binding to sterols in the cytoplasmic membrane that subsequently causes pore formation and eventually results in cell death. Many polyenes are produced by Streptomycetes and released into the soil environment, where they can then target fungal hyphae. While not antibacterial, these compounds could nevertheless be also perceived by bacteria sharing the same habitat and serve as signaling molecules. We therefore addressed the question of how polyenes such as amphotericin B are perceived by the soil bacterium, Bacillus subtilis. Global transcriptional profiling identified a very narrow and specific response, primarily resulting in strong upregulation of the lnrLMN operon, encoding an ABC transporter previously associated with linearmycin resistance. Its strong and specific induction prompted a detailed analysis of the lnrL promoter element and its regulation. We demonstrate that the amphotericin response strictly depends on the two-component system LnrJK and that the target of LnrK-dependent gene regulation, the lnrLMN operon, negatively affects LnrJK-dependent signal transduction. Based on this knowledge, we developed a novel whole-cell biosensor, based on a P lnrL -lux fusion reporter construct in a lnrLMN deletion mutant background. This highly sensitive and dynamic biosensor is ready to be applied for the discovery or characterization of novel amphotericin-like polyenes, hopefully helping to increase the repertoire of antimycotic and antiparasitic polyenes available to treat human and animal infections.

4.
Mol Microbiol ; 112(2): 498-514, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990934

RESUMO

The activity of extracytoplasmic function σ-factors (ECFs) is typically regulated by anti-σ factors. In a number of highly abundant ECF groups, including ECF41 and ECF42, σ-factors contain fused C-terminal protein domains, which provide the necessary regulatory function instead. Here, we identified the contact interface between the C-terminal extension and the core σ-factor regions required for controlling ECF activity. We applied direct coupling analysis (DCA) to infer evolutionary covariation between contacting amino acid residues for groups ECF41 and ECF42. Mapping the predicted interactions to a recently solved ECF41 structure demonstrated that DCA faithfully identified an important contact interface between the SnoaL-like extension and the linker between the σ2 and σ4 domains. Systematic alanine substitutions of contacting residues support this model and suggest that this interface stabilizes a compact conformation of ECF41 with low transcriptional activity. For group ECF42, DCA supports a structural homology model for their C-terminal tetratricopeptide repeat (TPR) domains and predicts an intimate contact between the first TPR-helix and the σ4 domain. Mutational analyses demonstrate the essentiality of the predicted interactions for ECF42 activity. These results indicate that C-terminal extensions indeed bind and regulate the core ECF regions, illustrating the potential of DCA for discovering regulatory motifs in the ECF subfamily.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fator sigma/química , Fator sigma/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Filogenia , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fator sigma/genética
5.
iScience ; 13: 380-390, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30897511

RESUMO

In bacteria, the promoter specificity of RNA polymerase is determined by interchangeable σ subunits. Extracytoplasmic function σ factors (ECFs) form the largest and most diverse family of alternative σ factors, and their suitability for constructing genetic switches and circuits was already demonstrated. However, a systematic study on how genetically determined perturbations affect the behavior of these switches is still lacking, which impairs our ability to predict their behavior in complex circuitry. Here, we implemented four ECF switches in Bacillus subtilis and comprehensively characterized their robustness toward genetic perturbations, including changes in copy number, protein stability, or antisense transcription. All switches show characteristic dose-response behavior that varies depending on the individual ECF-promoter pair. Most perturbations had performance costs. Although some general design rules could be derived, a detailed characterization of each ECF switch before implementation is recommended to understand and thereby accommodate its individual behavior.

6.
Nucleic Acids Res ; 46(1): 134-145, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29069433

RESUMO

The ability of bacteria to adapt to stress depends on the conditional expression of specific sets of genes. Bacillus subtilis encodes seven extracytoplasmic function (ECF) sigma (σ) factors that regulate functions important for survival under conditions eliciting cell envelope stress. Of these, four have been studied in detail: σM, σW, σX and σV. These four σ factors recognize overlapping sets of promoters, although the sequences that determine this overlapping recognition are incompletely understood. A major role in promoter selectivity has been ascribed to the core -10 and -35 promoter elements. Here, we demonstrate that a homopolymeric T-tract motif, proximal to the -35 element, functions in combination with the core promoter sequences to determine selectivity for ECF sigma factors. This motif is most critical for promoter activation by σV, and contributes variably to activation by σM, σX and σW. We propose that this motif, which is a feature of the deduced promoter consensus for a subset of ECF σ factors from many species, imparts intrinsic DNA curvature to influence promoter activity. The differential effect of this region among ECF σ factors thereby provides a mechanism to modulate the nature and extent of regulon overlap.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulon/genética , Fator sigma/metabolismo
7.
J Biol Eng ; 7(1): 29, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24295448

RESUMO

BACKGROUND: Standardized and well-characterized genetic building blocks are a prerequisite for the convenient and reproducible assembly of novel genetic modules and devices. While numerous standardized parts exist for Escherichia coli, such tools are still missing for the Gram-positive model organism Bacillus subtilis. The goal of this study was to develop and thoroughly evaluate such a genetic toolbox. RESULTS: We developed five BioBrick-compatible integrative B. subtilis vectors by deleting unnecessary parts and removing forbidden restriction sites to allow cloning in BioBrick (RFC10) standard. Three empty backbone vectors with compatible resistance markers and integration sites were generated, allowing the stable chromosomal integration and combination of up to three different devices in one strain. In addition, two integrative reporter vectors, based on the lacZ and luxABCDE cassettes, were BioBrick-adjusted, to enable ß-galactosidase and luciferase reporter assays, respectively. Four constitutive and two inducible promoters were thoroughly characterized by quantitative, time-resolved measurements. Together, these promoters cover a range of more than three orders of magnitude in promoter strength, thereby allowing a fine-tuned adjustment of cellular protein amounts. Finally, the Bacillus BioBrick Box also provides five widely used epitope tags (FLAG, His10, cMyc, HA, StrepII), which can be translationally fused N- or C-terminally to any protein of choice. CONCLUSION: Our genetic toolbox contains three compatible empty integration vectors, two reporter vectors and a set of six promoters, two of them inducible. Furthermore, five different epitope tags offer convenient protein handling and detection. All parts adhere to the BioBrick standard and hence enable standardized work with B. subtilis. We believe that our well-documented and carefully evaluated Bacillus BioBrick Box represents a very useful genetic tool kit, not only for the iGEM competition but any other BioBrick-based project in B. subtilis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...